Ví dụ Quỹ đạo nghiệm số

RL = root locus: quỹ đạo nghiệm số; ZARL = zero angle root locus:góc zero quỹ đạo nghiệm số

Giả sử rằng có một hệ hồi tiếp trong đó đầu vào là tín hiệu X(s) và đầu ra là Y(s). Độ lợi của đường tiến hệ thống phản hồi là G(s); độ lợi của đường hồi tiếp là H(s).

Đối với hệ thống này, hàm truyền tổng quát có dạng[1]

T ( s ) = Y ( s ) X ( s ) = G ( s ) 1 + G ( s ) H ( s ) {\displaystyle T(s)={\frac {Y(s)}{X(s)}}={\frac {G(s)}{1+G(s)H(s)}}}

Do đó các cực vòng kín (nghiệm của các phương trình đặc tính) của hàm truyền là các đáp án của phương trình 1 + G(s)H(s) = 0. Đặc điểm cơ bản của phương trình này là các nghiệm sẽ được tìm thấy bất kể khi nào G(s)H(s) = -1.

Trong các hệ thống không có độ trễ thuần túy, tích G(s)H(s) = -1 là một hàm đa thức hữu tỉ và có thể biểu diễn dưới dạng[1]

G ( s ) H ( s ) = K ( s + z 1 ) ( s + z 2 ) ⋯ ( s + z m ) ( s + p 1 ) ( s + p 2 ) ⋯ ( s + p m + n ) {\displaystyle G(s)H(s)={\frac {K(s+z_{1})(s+z_{2})\cdots (s+z_{m})}{(s+p_{1})(s+p_{2})\cdots (s+p_{m+n})}}}

trong đó −zi là m zero, −pi là m + n cực, và K độ lợi vô hướng. Thông thường biểu đồ quỹ đạo nghiệm số sẽ chỉ thị vị trí các cực của hàm truyền đối với các giá trị biến đổi của K. Biểu đồ quỹ đạo nghiệm số sẽ là tất cả các điểm nằm trong mặt phẳng s trong đó G(s)H(s) = -1 đối với bất kỳ giá trị nào của K.

Việc phân tích thành thừa số của K và việc sử dụng các đơn thức đơn giản nghĩa là việc đánh giá đa thức hữu tỉ này có thể được thực hiện với các kỹ thuật vector mà thêm hoặc trừ các góc và nhân hoặc chia biên độ. Việc thành lập vector xuất phát từ sự thật rằng mỗi đơn thức trong thừa số G(s)H(s), lấy ví dụ (s−a), biểu diễn vector từ a tới s. Đa thức này có thể được đánh giá bằng cách xem xét biên độ và góc của mỗi vector này. Theo toán học vector, góc của kết quả này là tổng của tất cả các góc trong tử số trừ đi tổng của tất cả các góc trong mẫu số. Tương tự như vậy, biên độ của kết quả là tích của tất cả các biên độ trong tử số chia cho tích của tất cả các biên độ ở mẫu số. Nó chỉ ra rằng việc tính biên độ là không cần thiết vì K luôn biến đổi; một trong những giá trị của nó có thể dẫn đến một nghiệm. Vì vậy, để kiểm tra xem một điểm trong mặt phẳng slà trên quỹ đạo nghiệm số hay không, chỉ cần xem xét các tất cả các cực và zero của vòng hở. Một phương pháp đồ họa sử dụng một thước đo đặc biệt gọi là "Spirule" đã từng được sử dụng để xác định góc và vẽ quỹ đạo nghiệm số.[2]

Từ hàm T(s), ta có thể thấy rằng giá trị của K không ảnh hưởng tới vị trí của các zero. Quỹ đạo nghiệm số chỉ đưa ra vị trí của các cực vòng kín khi độ lợi K bị thay đổi. Các zero của hệ thống không dịch chuyển.

Sử dụng một vài quí tắc cơ bản, phương pháp quỹ đạo nghiệm số có thể vẻ toàn bộ hình dạng của đường (quỹ đạo) đi ngang qua bởi các nghiệm khi giá trị của K thay đổi. Biểu đồ của quỹ đạo nghiệm số đưa ra một ý tưởng về độ ổn định và các đặc tính động học của hệ thống phản hồi này đối với các giá trị khác nhau của K.[3][4]

Tài liệu tham khảo

WikiPedia: Quỹ đạo nghiệm số //www.amazon.com/dp/B000KPT04C http://wikis.controltheorypro.com/index.php?title=... http://www.mathworks.com/help/toolbox/control/ref/... http://reference.wolfram.com/mathematica/ref/RootL... http://www.atp.ruhr-uni-bochum.de/rt1/syscontrol/n... http://www.swarthmore.edu/NatSci/echeeve1/Ref/LPSA... http://www.engin.umich.edu/group/ctm/rlocus/rlocus... http://lccn.loc.gov/67016388 http://ipnpr.jpl.nasa.gov/progress_report/42-73/73... http://web.archive.org/web/20091027092528/http://g...